If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120p-4p^2=600
We move all terms to the left:
120p-4p^2-(600)=0
a = -4; b = 120; c = -600;
Δ = b2-4ac
Δ = 1202-4·(-4)·(-600)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-40\sqrt{3}}{2*-4}=\frac{-120-40\sqrt{3}}{-8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+40\sqrt{3}}{2*-4}=\frac{-120+40\sqrt{3}}{-8} $
| 44x+5-(3x+4)=270 | | 2=a/5-3 | | 900=(x-3)⋅(-100) | | ((2x+120)/3=5x-20 | | 2(3x+6)=3(x–10 | | 7(7+3)=6(6+x) | | 2(y-1)+3(y-2)=4(y-3) | | 32–2x=20 | | x/3+0.5xx=6 | | 5x1=x+15 | | 0.10d+0.05(d+9)=2.25 | | 98-w=190 | | 51=x+15 | | 2(5)+y=10-3y | | 3(x-3)=72÷12 | | 7(x+3)+6x=86 | | 5x+2+4x=11 | | 3x+9=2x=8 | | 11=g+72/20 | | 4=f-808/30 | | 8/12=x/1 | | u-7=5 | | 155x=10 | | n-694/26=7 | | (x+3)+x=86 | | 225/h=9 | | 15=270/k | | 4/8=u/66 | | 12/8=x/1 | | (w-1.5)(w-1.5)=352.25 | | 5=p-885/17 | | 286/26=x/1 |